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Abstract
Over the past two decades x-ray absorption spectroscopy has proven to be a
valuable tool for the study of the short-range order in a wide variety of materials,
including disordered systems such as superionic conductors as well as glasses,
amorphous and liquid systems in general. A number of methods have been
proposed to analyse EXAFS data. However, in the case of disordered systems,
only the ones taking the distribution of atomic environments into account should
be retained. Molecular dynamics (MD) simulations are a valuable tool in
this respect, as will be shown from results obtained in a supercritical aqueous
solution.

1. Introduction

X-ray absorption spectroscopy (XAS) is a powerful structural technique for the investigation
of the short-range environment around selected atomic species in condensed matter. This
method’s chemical selectivity is of particular interest since it allows one to deal with complex
systems (containing a large number of elements) and with diluted samples. For such systems
it appears very often that XAS is the only structural tool that can be easily used.

As a result of the x-ray induced excitation,a core electron is ejected from the absorber and is
scattered by the potentials of the surrounding atoms. The quantum interference resulting from
the photoelectronic wave scattering, visible in the XAS spectra and called EXAFS (extended
x-ray absorption fine structure), is thus a probe of the absorber’s local environment.
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Complications in the data analysis arising when disordered environments are considered
have been commented upon in the literature a great deal [1–4]. By disordered environment we
mean here any system for which the distribution of neighbour-distances is continuous, i.e. where
separate coordination shells cannot be distinguished. The overlap between coordination shells,
(i.e. the deviation from zero of the radial pair distribution function’s first minima), can be used
as a measure of the extent to which the problem that we are considering is severe.

In spite of the direct relationship between the EXAFS signal and the distributions of
neighbours around the absorber (see equations (4) and (6) in the next section), it is generally
not possible for these systems to carry out a straightforward Fourier transformation of the
experimental signal. This inversion belongs to the class of ill-defined problems [5]: the limited
data range, and in particular the loss of low k information (this energy region being dominated
by multiple scatterings), does not allow for a unique determination of the real space solutions.
This imposes the use of constrained methods to analyse the data. For instance, regularization
methods, which are non-parametric and which allow the imposition of physical constraints in
a systematic way, were proposed more than two decades ago [5, 6]. In the same spirit, wavelet
transform methods [7, 8] were recently proposed as alternatives to Fourier transforms within the
EXAFS analysis context. However, both regularization [9–12] and wavelet methods [13–15]
have scarcely been used so far, and more work is needed.

Ideally, the required methods of analysis should be able to deal with the lack of
long/middle-range information in the EXAFS data and to provide a sensible description of
the continuous distribution of environments in such systems. Due to the errors associated
with the Fourier transformation of a data set of limited k-range, inverse methods, i.e. methods
starting from a real-space model and carrying the data over into k-space, should be encouraged.
As will be seen in the next section, the structure functions dampen out rather quickly in r -
space for such systems. Furthermore, it is straightforward to extend the r -range if necessary,
and numerical simulations such as molecular dynamics (MD) or Monte Carlo (MC) are in
this respect useful tools. They were used as early as 1980 [16] to support EXAFS analysis.
However, intimate combinations of MD/MC-EXAFS such as the one used in section 3 have
become feasible only in the last decade, due to both the increasing advance of computational
capabilities and the development of modern XAS algorithms allowing one to exploit as much
as possible the symbiosis.

In this paper, we shall first briefly review the methods used to combine EXAFS with
numerical calculations. We then concentrate on some results obtained from our investigations
of supercritical aqueous electrolytes [17–20]. The combined use of molecular dynamics
calculations and EXAFS experiments appears to be not only a powerful tool but also a didactic
means to illustrate the strengths and limitations of the x-ray absorption spectroscopy for the
study of highly disordered materials. Finally, we conclude with some remarks about alternate
methodologies, which may develop in the future.

2. Combining numerical simulations with EXAFS

Numerical simulations such as molecular dynamics (MD) or Monte Carlo (MC)
calculations [21] allow one to sample the phase space accessible to the system of interest under
given thermodynamic conditions. The required input data comprise an initial configuration
constructed from a box containing a given number of atoms and, for classical simulations, a set
of interatomic potentials. Ab initio MD simulations [22–24] solve the Schrödinger equation
for the system of electrons contained in the box and thus do not use interatomic potentials;
however, usually only the valence electrons are considered, which leads to the introduction of
pseudo-potentials to replace the screened core electrons.
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In MC simulations, the atoms are randomly moved and the displacements accepted
with statistical weights fixed by the ensemble one wants to sample (e.g. the canonical NVT
ensemble). In classical MD simulations, the forces acting on the atoms are calculated at
equally spaced intervals of time, and the atoms moved according to Newton’s equation. In ab
initio simulations, the forces acting on the ions are calculated by using the Hellmann–Feynman
theorem.

In all cases an ensemble of microscopic configurations is retrieved from which one can
compute any structural ensemble-averaged observable, e.g. the EXAFS signal.

This allows for the determination of synthetic EXAFS spectra in which the effects of the
disorder (i.e. the heterogeneity of the environments) are intrinsically taken into account. Thus,
the comparison of computed and experimental spectra constitutes a much more robust way
to analyse data than the unconstrained peak fitting approaches. Conversely, the experimental
information can be used to check the reliability of the intermolecular potentials used in the
simulations [25–27].

In the recent years, the number of studies combining MD [17–19, 25, 26, 28–66] (and, to
a much lesser extent, MC [67–69]) simulations with EXAFS has considerably increased due
to the advance of modern XAS algorithms. Two methodologies have been employed which
use either a set of clusters extracted from the sampled configurations or the averaged structure
description in terms of radial pair distribution functions g(r).

2.1. Analysis from a set of clusters

Clusters centered at the x-ray absorbing atoms (denoted α) can be extracted from the
configurations generated in a simulation. Each cluster defines a set of neighbouring atoms
located at positions rj relative to the photoelectron source at r0. For each cluster, an individual
EXAFS spectrum,χc(k), can be generated; it results from the contributions from all the possible
scattering paths starting and ending at the absorber site:

χc(k) =
∑

χ2(k) +
∑

χ3(k) +
∑

χ4(k) + O(χ5), (1)

where k = √
2m(E − E0)/h̄ is the modulus of the photoelectron wavevector (E0 is the

threshold energy). In equation (1), the subscript stands for the number of legs involved in
the scattering path: the first term is the contribution from single scatterings (two legs), the
second from three-legged multiple scatterings, etc.

Restricting the summation to single scattering (SS) contributions, the individual EXAFS
spectrum for each cluster can be written as

χc(k) =
paths∑

j

S2
0 (k)

1

k R2
j

exp(−2R j/λ(R j , k))| f eff
j (k, R j )| sin(2k R j + φ j(k, R j )), (2)

where j goes over the paths; R j is half its total length (R j = |rj − r0| in the case of SS paths),
and | f eff

j | and φ j are the effective scattering amplitude and net phase functions, respectively,
of path j .

It has been shown [70] that each multiple scattering (MS) gives rise to an oscillating
contribution, which can be expressed in a form analogous to that of the single scattering.
Thus, provided that the MS expansion converges (a condition which is usually fulfilled in the
medium/high energy range of the spectrum, typically for k > 3 Å), the above expression can
be extended to MS contributions as well [3, 70] (using the scattering matrix algorithm of Rehr
and Albers [71, 72]).
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The average over all the individual spectra,

〈χα(k)〉 = 1

Ncluster

Ncluster∑
c

χc(k), (3)

provides an EXAFS spectrum which can be compared to the experimental one.
In this method, the disorder is taken into account by summing over a number of structural

arrangements. Provided the sampling is representative, there is no need for further adjustments,
e.g. through Debye–Waller factors in equation (2).

This method was pioneered by Palmer et al [54] and subsequently used by different
groups [17, 18, 26, 55–58, 60–66, 68, 69, 73]. Most of these works were devoted to the
elucidation of the hydration structure around ions in aqueous solutions. The possibility to
detect very fine effects such as the contribution from the second water shell was addressed,
and multiple-scattering contributions from the first shell have been investigated as well as the
contributions from the water hydrogens.

All authors used the FEFF code [71, 74], which allows for the calculation of the effective
scattering amplitude | feff(k, R j )| and phase φ j(k, R j ) associated to each path in equation (2)
and an efficient selection of the main scattering paths. The calculations of the scattering
potentials can be carried out using a full ab initio self-consistent field (SCF) scheme or
using the common muffin-tin (MT) approximation (overlapping of spherically averaged atomic
potentials).

Several practical questions must be addressed, such as the determination of the sampling
interval and the total sampling length. In practice it is found that snapshots taken every
0.2 ps from an MD simulation run yield to a more or less statistically independent set of
configurations. Yet the total number of spectra required can be huge in labile structures such
as the ones encountered in aqueous solutions (typically,a minimum of 500–1000 spectra should
be used [17, 64]). Of course, these figures are dependent upon the amount of fluctuations in
the absorber’s environment (in other words, upon the strength of the interactions within the
first coordination shell).

Due to the local character of the EXAFS technique, the clusters’ minimal size can be
small (distances of the order of 5 Å for disordered systems). However, when using the MT
approximation, artefacts due to a too short truncation can occur: this is due to the fact that
for an accurate determination of the MT radii the full environment of the scatterers is needed.
This means that the full second coordination shell, at least, should be included in the clusters,
even if the scattering contributions come solely from the first neighbours. Such effects were
visible for cluster radii smaller than 8 Å in the case of the bromide solvation [20].

Since it is possible to include n-legged paths up to any desired order, this methodology
is convenient for exploring the contributions from multiple scatterings. It is also well
adapted to investigating the effects of different local environments (due to static or dynamic
fluctuations) [17, 68]. It is furthermore possible to calculate the partial contributions from
the different types of scatterers by selecting the appropriate paths. However, it should be
noted that in this case all species should still be included at the level of the potentials since a
straightforward removing of the undesired atoms would distort the charge density calculations
by creating artificial holes.

The main drawback of this method is its computational cost. Computing thousands of
spectra may appear intractable in some cases, especially when using SCF calculations and/or
including high-order MS contributions. Tricks such as computing the potentials from one
representative cluster and using them for all clusters can be used, but the relevancy of these
approximations should be checked in the case of highly disordered systems.
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2.2. Analysis from a set of gn functions

The average atomic structure seen from a given atom can be described using many-body
distribution functions, hereafter called gn. These functions can be easily calculated from the
atomic coordinates saved during a simulation. For instance, the g2(r) function, usually called
the radial pair distribution function (RDF), is a normalized histogram of interatomic distances.
Similarly, g3(r1, r2, θ) is a triplet distribution (or a 3D normalized histogram of interatomic
angles).

The gn distributions allow one to calculate any structurally averaged quantity. In particular,
the EXAFS signal is given, for a monatomic system by [4, 75]

〈χ(k)〉 =
∫

dr 4πρr2g2(r)γ (2)(k, r)

+
∫

dr1 dr2 dθ 8π2r2
1 r2

2 sin(θ)ρ2g3(r1, r2, θ)γ (3)(r1, r2, θ, k) + · · · , (4)

where ρ is the number density and the γ (n) functions are oscillating functions which represent
the irreducible n-body contributions [75] to the EXAFS signal (contributions from n higher
than 3 have been omitted). Thus, the first term in equation (4) stands for all possible scattering
contributions (SS and MS) involving the absorber and one scatterer, the second term represents
MS contributions involving the absorber and two scatterers, etc. The first term is most often
the leading term and the higher order terms are then not considered in the EXAFS analysis.
However, these terms are not always negligible (for instance when dealing with liquid metals
or with the well defined hydration structures of transition-metal ions) and the sensitivity of
EXAFS to such contributions has sometimes been exploited to retrieve triplet correlations (see
e.g. [33, 76–78]).

Restricting the discussion now to two-body terms, we shall consider the case of an N-
component system. The average atomic structure seen from any α-particle is described by
the set of N(N−1)

2 partial radial distribution functions (PRDFs) gαβ(r), where β runs over all
the species in the system. The gαβ(r) PRDF is obtained from the simulated coordinates by
counting the number of β particles located at distances between r and r +dr from any α particle
and by normalizing this number by the corresponding value for a uniform gas of density ρβ :

gαβ(r) = dNβ(r, r + dr)

4πρβr2 dr
. (5)

The EXAFS partial contribution 〈χαβ(k)〉 from each scatterer β around the x-ray absorber
species α is thus given by [19, 79]

〈χαβ(k)〉 =
∫ rαβ

0
4πρβr2gαβ(r)γ

(2)
αβ (k, r) dr, (6)

where γ
(2)
αβ (k, r) is the EXAFS signal corresponding to a single atom pair at distance r . The

total EXAFS spectrum, 〈χα(k)〉, calculated at a given absorption edge (e.g. K-edge) of the α

species is then obtained from the summation over all the scatterers:

〈χα(k)〉 =
∑

β

〈χαβ(k)〉. (7)

The kernel of the integral in equation (6) can be written [75]

γ
(2)
αβ (k, r) = Aαβ(k, r) sin(2kr + φαβ(k, r)), (8)

where Aαβ(k, r) and φαβ(k, r) are the EXAFS amplitude and phase functions of an α–β cluster,
respectively. (Aαβ(k, r) is related to S2

0 (k) 1.
kR2 exp(−2R/λ(R, k))| feff (k, R)| in equation (2).)
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Due to the short-range character of this kernel, the upper limit of integration rαβ

corresponds typically, in liquid systems, to the first minimum of gαβ(r). In highly disordered
systems, values even smaller than the ones assumed in the next section can be used. However,
from a practical point of view, a large value of rαβ should be used (typically 10 Å) to ensure
that the calculation converges. Furthermore, the g(r) integration cannot be sharply truncated,
and thus a Gaussian semi-window is used at high r to avoid termination ripples [80].

The relation between the EXAFS signal and the partial radial distribution functions was
available in the early 1980s [81, 82]. The use of theoretical g(r) obtained from physically
sound models [83, 84] or from MD simulations [16] to support the EXAFS analysis can be
traced back to that period. However, a major advance towards the consistent use of these
approaches has been achieved in the last decade [79] with the advance of the GNXAS set of
programs [75, 80, 85], which explicitly makes use of the gn functions to perform accurate MS
EXAFS calculations of the XAS cross-section.

Combinations of MD or MC simulations with GNXAS have been applied to a large range
of disordered systems (e.g. [19, 28–40, 42–48, 51, 53, 67]). This methodology has several
advantages over the one described above. First, the calculation of the average EXAFS signal
is straightforward and time inexpensive (as soon as the gn functions have been obtained).
Moreover, the configurational average of the MS contributions is treated on a more rigorous
basis. Second, it allows very easily for the identification of the partial 〈χαβ(k)〉 contributions
of interest.

2.3. Refining the simulated model

The comparison of the calculated and experimental EXAFS signals provides a stringent test
of the ‘low-r part’ of the simulated model and thus mostly of the short-range part of the
interatomic potentials. This information can be used when the simulations are wide of the
mark to refine the potentials until a satisfactory agreement is reached. However, such iterative
procedures might be very time expensive. More simply, the experimental information can be
used to refine the simulated outputs (atomic coordinates or RDFs).

One could think of using the simulated atomic coordinates as a starting input for a reverse
Monte Carlo (RMC) analysis of the EXAFS data [86]. Such a coupling of MD and RMC has
been used for the analysis of x-ray diffraction data of glasses [87]; this allowed the identification
of the pair potentials requiring optimization, and a potential fitting step was then introduced
in the methodology [88]. However, we do not know of any work having used an MD-RMC
combination for EXAFS data.

One simple approach is to shift and/or modify the shape of the RDF’s first peak so as
to reach an agreement with the EXAFS experiment [19]. Within the GNXAS framework,
an iterative and automated method allowing for the refinement of the simulated g(r) was
proposed ten years ago [28]. The initial model g(r) is split into a short-range part to be refined
(typically the first peak of g(r)) and a remaining contribution (tail). The short-range part is
modelled by several (usually one or two) short-range peaks, using 
-like functions [28, 76].
The EXAFS signals associated with each contribution (short-range peaks and tail) are then
calculated and the parameters describing the peaks are varied in an iterative process to improve
the agreement with the experimental 〈χ(k)〉 while keeping the tail contribution fixed. In this
way, the refinement of the short-range part (to which EXAFS is very sensitive) is anchored to
the middle/long-range part (to which EXAFS is almost blind) provided by the initial model.
The reconstructed distribution obviously fulfils the constraint limr→∞ g(r) = 1.

A variation of this method has been proposed, initially for mono-component systems [79],
which allows one to further constrain the shape of the reconstructed distribution by forcing it to
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satisfy thermodynamic limits: constraints on the coordination numbers and higher even-order
moments of the reconstructed distribution are derived from the compressibility rule (given by
the low q limit of the structure factor, 〈S(q)〉. Here q stands for the scattering wavevector
modulus). This methodology was later extended to ionic binary salts [89] and very recently
to any binary mixture [90] (the constraints on the structural parameters are obtained in this
latter case from the long wavelength limits of the Bathia–Thornton structure factors [91]). As
pointed out by these authors, the reduction in the number of free parameters and thus in the
uncertainty in the shape of the reconstructed distribution is an important point, especially for
liquids. In the case of multicomponent systems, it is also possible to take into account the
constraint gAB(r) = gBA(r) by adjusting simultaneously a set of data acquired at one (or more)
absorption edge of each element A and B (multiple-edge analysis [89, 92]).

The initial g(r) for this analysis can be obtained from diffraction data, simulations or any
other type of calculations. Clearly, the reliability of the final g(r) in the long-distance range
will be strongly dependent on this original model. Thus, numerical simulations are particularly
helpful when diffraction experiments cannot be handled (e.g. in low concentrated solutions or
in complex systems).

3. A case study: supercritical aqueous solutions

We shall now focus on the hydration structure of the bromine ion at high temperature and low
density. We shall show that this structure cannot be defined unambiguously by EXAFS alone;
the use of the MD-EXAFS combination appears mandatory to constrain the analysis since
there is no other experimental information available for this system in these conditions.

3.1. Methods

EXAFS experiments at the Br K-edge in a diluted (0.2 molal) RbBr–H2O solution were
carried out in ambient (ρ ∼ 1 g cm−3) and supercritical (ρ ∼ 0.4 g cm−3) conditions at
the ESRF beamline BM32. We shall concentrate on the latter conditions, which correspond
to T = 450 ◦C and p = 450 bar. In these conditions, the usable data range obtained in a
former investigation [17] was limited to about kmin = 2.5 and kmax = 6 Å−1; in a subsequent
investigation [19] the higher quality of the data enabled us to extend kmax up to 10 Å−1.

Classical MD simulations were performed at the corresponding thermodynamic conditions
(T = 450 ◦C, ρ ∼ 0.4 g cm−3) for 800 ps on a system containing 452 water molecules and two
Rb+Br− ion pairs. The parameters used for the interatomic potentials are described in [17].
Atomic configurations were saved every 0.2 ps. MD-EXAFS spectra have been calculated
using both methods (clusters and g(r)) described above. For the first method, 8000 clusters
were extracted from the trajectory and used as input for the FEFF code [74]. An excellent
agreement was obtained between SCF and MT calculations [20]. In the latter case, it was found
that a radius of at least 8 Å was necessary to avoid artefacts in the calculations (resulting in slight
distortions of the smoothness of the dominating oscillation). An SCF radius of 4.5 Å was used
in the former case. Hydrogen scattering contributions were removed in the MT calculations.
Contributions from oxygen MS scattering were found to be negligible. For the second method,
all gBr−β(r) PRDFs (β = O, H, Br, Rb) were injected into equation (6). The total average
signal obtained (equation (7)) is in good agreement5 with the one obtained from the clusters’
average [20], thereby demonstrating the equivalency of both methodologies.

5 Except at low k values where a slight mismatch of the leading frequency was observed, due to, most likely, the
slightly different strategies in both methods to compute the muffin-tin parameters.
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Figure 1. Left-hand panel: partial radial distribution function gBrO(r) obtained from the MD
simulations in the RbBr–H2O solution (0.2 molal) in supercritical conditions. The running
coordination number, nBrO(r), is shown with dots (right-hand scale). It is defined by equation (9).
Right-hand panel: comparison of the EXAFS experimental ( ) and simulated 〈χBrO(k)〉 spectra.

From the EXAFS point of view, the main contribution in the experimental signals arises
from the water oxygens. (The scattering power from the water hydrogens is too weak and
the ion–ion contributions are almost negligible at this concentration. However, see [19] for a
more detailed discussion of these contributions.) Thus, the experimental EXAFS signal can be
reproduced within experimental accuracy by integrating solely the Br–O PRDF (equation (6)),
see figure 1, right-hand panel. The running coordination number, nBrO(r), referred to in the
left-hand panel, is defined by

nBrO(r) = 4πρO

∫ r

0
gBrO(r ′)r ′2 dr ′, (9)

where ρO is the number density of water oxygen.

3.2. Discussion

The gBrO(r) obtained in supercritical conditions is shown in figure 1, left-hand panel. Note that
the first peak is very broad and cannot be clearly resolved from the second one since the first
minimum is not well defined (it is located somewhere between 4.4 and 4.9 Å). This reflects
the high mobility of the water molecules in the neighbourhood of the ion. As a result, any
geometrically defined coordination number for the first shell is poorly defined: it varies from 5
to 8 depending on the upper limit of integration of the g(r). We have studied the distributions
of the relative positions of the first seven oxygen neighbours: the first neighbours of each
Br− are determined, their distances are ordered and binned individually for each neighbour.
The distributions thus obtained, hereafter denoted gi

BrO(r), are shown in figure 2, left-hand
panel, together with the total gBrO(r) PRDF. They overlap because of both spatial6 and time7

fluctuations of the oxygen positions within the first coordination shell. One can note that

6 For instance, it may happen that the first neighbour of a particular Br− is found at a larger distance than the second
neighbour of another Br−.
7 For instance, it may happen that the first neighbour of a particular Br− is, at a later time, at a larger distance than
was the second neighbour at the former time.
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Figure 2. Left-hand panel: distributions of the positions of the seven first oxygen neighbours,
gi

BrO(r), within the first Br–O coordination shell, obtained from the MD simulations. Right-hand
panel: corresponding EXAFS partial contributions 〈χ i

BrO(k)〉 (obtained from the integration of
gi

BrO(r), equation (6)). Note that these contributions are marginal for i > 5.

these distributions are quite broad, especially for the more distant neighbours (i = 5, 6, 7),
illustrating the fluctuations in the bromine local environment. Similar decompositions of a
gαβ(r) PRDF into its gi

αβ(r) contributions can be found in other works (e.g. for water [93],
Se [68], Te [94], GeSe [95]).

Since the first peak of gBrO(r) extends beyond 4 Å one may question the possibility of
resolving the entire distribution of neighbours by EXAFS. Indeed, the higher r part of the g(r)

considered here is likely to give a very small contribution to the 〈χ(k)〉 EXAFS signal. Valuable
insight into this problem can be obtained from the decomposition of the gBrO(r) function into
its gi

BrO(r) contributions. Inserting each gi
BrO(r) into equation (6), all partial contributions

〈χ i
BrO(k)〉 to the total EXAFS 〈χBrO(k)〉 spectrum have been calculated. The resulting signals

are shown in figure 2, right-hand panel. Not surprisingly, the 〈χ i
BrO(k)〉 signals are quickly

smeared out as i increases (from 1 to 7). The main contributions come from the three first
neighbours.

Figure 3, left-hand panel, shows the distributions g1− j
BrO (r) obtained by summing up the

first j partial contributions (
∑ j

i=1 gi
BrO(r)). These distributions have been used in equation (6)

to obtain the signals 〈χ1− j
BrO (k)〉 shown in figure 3, right-hand panel. Equivalently, these

signals could have been obtained from the summation of the j first partial contributions
(
∑

i=1, j 〈χ i
BrO(k)〉). One notes that the quantity 〈χ1− j

BrO (k)〉 quickly converges (to the total

〈χBrO(k)〉 signal) as j increases: 〈χ1−6
BrO (k)〉 is not distinguishable from 〈χ1−5

BrO (k)〉; 〈χ1−3
BrO (k)〉

differs only by a small variation in amplitude. This means that the main features (position and
amplitude of the oscillations) of the total EXAFS signal are reasonably well reproduced as
soon as the distribution of the first three neighbours are taken into account. This distribution,
however, represents only a fraction of the full first coordination shell. This confirms that the
EXAFS signal is highly sensitive to the rise and amplitude of the first peak of g(r) but almost
blind to the details of its shape beyond the first maximum. Similar findings were obtained in
other disordered systems, for instance in liquid germanium [4] or in silicate glasses [52].

This shows the limitation to our ability to resolve such a coordination shell by the use of
EXAFS alone. Suppose that the gBrO(r) shown in figure 1 is the true distribution and thus that
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Figure 3. Left-hand panel: distributions of all positions from the first to the j th oxygen
neighbours, g1− j

BrO (r), obtained from the MD simulations. Right-hand panel: corresponding EXAFS

contributions 〈χ1− j
BrO (k)〉 (obtained from the integration of g1− j

BrO (r), equation (6)). Note that these
contributions converge as soon as j > 4.

the MD 〈χBrO(k)〉 is the perfect experimental signal one could hope to get from a measurement
with zero noise. Inverting equation (6) to retrieve the RDF is fundamentally unstable since the
result can be anything between g1−5

BrO (r) and g1−8
BrO (r). In practice, there will always be some

noise (and possibly some errors) affecting the experimental data which will further increase the
variability of the solutions. For instance, g1−3

BrO (r) can reproduce the experimental data shown in
figure 1 (right-hand panel) within the experimental error bars (given the uncertainty associated
with the extraction of the experimental signal). Given the much lower signal to noise ratio of
earlier experiments [17, 55], it is not surprising that a very low (and unrealistic) coordination
number (∼2) was obtained from a standard EXAFS analysis (cumulant expansion) [55].

Note also that the asymmetry of a given distribution is not always reflected in the EXAFS
data: symmetric distributions, such as g1−3

BrO (r), can reproduce the experimental data although
the actual distribution may also be the highly asymmetric g1−8

BrO (r). This invalidates a quite
common argument in the literature, namely that when the asymmetry parameter (the third
cumulant within a cumulant analysis) is found to be negligible or not necessary for the
data fitting, the distribution of neighbours is Gaussian: this argument is unfortunately not
conclusive.

This urges the use of careful methods of analysis when dealing with disordered systems.
From the information contained in the EXAFS data, one can get very accurate information on
the low-r side of g(r) (say the shape of the distribution up to, typically, the first maximum).
The EXAFS data are generally not suitable for retrieving the high-r side of g(r) (typically,
beyond the first maximum). This implies that attempts to fit the EXAFS data by isolated peaks
models (on a g(r) = 0 baseline) are irrelevant for these systems, whatever the functional form
used to model the peaks. Such unsuitable models almost always tend to provide narrower
distributions than the actual ones (resulting in underestimated coordination numbers and mean
interatomic distances). In any case, as pointed out elsewhere [4], one needs to take into account
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the continuous distribution of distances which characterize the structure of disordered systems.
These considerations are at the heart of the methodology proposed in [28, 79]: an external
model g(r) is used as a starting distribution in a refinement process which allows the low-r part
of this model to be varied on top of a realistic baseline (provided by the model middle/long-
range part, which is kept fixed). In this way, a continuous distribution is constructed.

The present considerations, although derived from an extreme case study (high temperature
liquid with weak average intermolecular interactions) and chosen here for didactic purposes,
are of general relevance. They apply to a large class of so-called ill-ordered systems.

4. Conclusions

The strengths and limitations of x-ray absorption spectroscopy are now well understood [3, 4]
and an increasing number of studies combining XAS with other experimental or numerical
techniques have appeared in the last ten years. Despite being very promising, the RMC
method has so far not been much used for EXAFS analysis [15, 86, 96–100]. It is clear that for
disordered systems special care has to be taken since the information contained in the EXAFS
data will most often not be sufficient to constrain the RMC fit. However, the simultaneous RMC
analysis of EXAFS and diffraction data [96, 99, 100] appears to be a very attractive tool and
a good alternative to peak-fitting methods. Numerical simulations are a natural complement
to RMC and could be used in conjunction: similarly to what has been done for the analysis
of diffraction data 〈S(q)〉 [87], one could think of using the RMC method to refine a starting
configuration obtained from MD (or MC) simulations for the analysis of EXAFS 〈χ(k)〉.
This could then be exploited in a refinement process of the interatomic potentials used in the
simulations [88]. There is no doubt that these and similar methods will play a growing role in
the next few years.
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